

Home > Support > Datasheets > T-Series Datasheet > Appendix A - Specifications

# Appendix A - Specifications [T-Series Datasheet]

Log in or register to post comments

# Appendix A - Specifications Overview

Specifications for describing the T-Series devices can be broken down into several primary sections with a few sub-sections. Navigate the following sections to see specifications.

# A-1 Data Rates [T-Series Datasheet]

Log in or register to post comments

### **Communication Modes**

Communication between the host computer and a T-series device occurs using one of two modes:

1. Command-response

Command-response mode is appropriate for most applications. In command-response mode, the host sends a command data packet, to which the T-series device sends a response data packet.

2. Stream

Stream mode is when the device collects periodic sampling events automatically. Collected data is stored in the device's memory until it retrieved by the host application. The LJM library stream functions simplify data collection from T-series devices. Not all functionality is supported in stream mode. Please refer to the <u>Stream Mode</u> section of the user's manual for more details.

For more information about command-response and stream, see 3.0 Communication.

Note: These specs are generated using a LabVIEW program that reads data from a device in a simple while(1) loop. Additionally, we used a PC running Windows with a fairly average Intel CPU. We have found the performance of LabVIEW to be very similar to C, C++, and other compiled languages and have therefore chosen LabVIEW to collect these data rates. If an application requires precise timing of CR packets we suggest doing additional research and replicating these results for the system being used.

Figure A1.1.1 depicts the two operating modes.

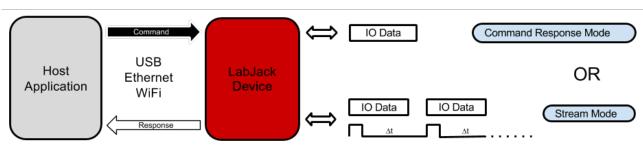



Figure A1.1. Communication modes

The use of a particular mode will depend on functionality and the hardware response time required by the end application.

### **Command-Response Data Rates**

All communication performed with T-series devices is accomplished using the <u>Modbus TCP</u> protocol, thus allowing direct communication with the device via low-level TCP commands. As an alternative, the <u>LJM library</u> may be used as a higher level communications layer for added convenience and minimal additional overhead. Tables A.1.1 and A.1.2 list expected communication overhead times associated with Modbus TCP and LJM Library communication options. These times are similar for all T-series devices, but the following were measured on a T7 (LJM: 1.0706, Firmware: 1.046).

 Table A.1.1. Typical communication overhead using direct Modbus TCP.

|                   | USB High-High | USB Other | Ethernet | WiFi |
|-------------------|---------------|-----------|----------|------|
|                   | [ms]          | [ms]      | [ms]     | [ms] |
| No I/O - Overhead | 0.6           | 2.1       | 1.0      | 6.5  |
| Read All DI       | 0.7           | 2.2       | 1.1      | 6.6  |
| Write All DO      | 0.7           | 2.2       | 1.1      | 6.6  |
| Write Both DACs   | 0.7           | 2.2       | 1.1      | 6.6  |

Table A.1.2. Typical communication overhead using LJM library.

|                   | USB High-High | USB Other | Ethernet | WiFi |
|-------------------|---------------|-----------|----------|------|
|                   | [ms]          | [ms]      | [ms]     | [ms] |
| No I/O - Overhead | 0.6           | 2.2       | 1.1      | 6.7  |
| Read All DI       | 0.7           | 2.3       | 1.2      | 6.8  |
| Write All DO      | 0.7           | 2.3       | 1.2      | 6.8  |
| Write Both DACs   | 0.7           | 2.3       | 1.2      | 6.8  |

The times shown in table A.1.2 were measured using a LabVIEW program running on Windows where all read and write operations are conducted with a single LJM\_eNames() call. The LJM\_eNames() functions is used to minimize the number of Modbus packets sent from the host (one packet per command/response set). The test program executes one of the listed tasks within a loop for a specified number of iterations, over a 1-10 second period. The overall execution time is divided by the total number of iterations, providing the average time per iteration for each task. The execution time includes LabVIEW overhead, LJM library overhead, Windows overhead, communication time (USB/Ethernet/WiFi), and device processing time.

A "USB high-high" configuration means the T4/T7 is connected to a high-speed USB2 hub which is then connected to a high-speed USB2 host. Even though the Tx is not a high-speed USB device, such a configuration does often provide improved performance. Typical examples of "USB other" would be a Tx connected to an old full-speed hub (hard to find) or more likely the Tx is connected directly to the USB host (your PC) even if the host supports high-speed.

#### Preemptive Operating Systems and Thread Priority:

It is important to understand that Linux, Mac OS X, and Windows are generally "best-effort" operating systems and not "real-time", meaning that the listed CR speeds can vary based on each individual computer, the hardware inside of it, its currently enabled peripherals, current network traffic, strength of signal, design of the application software, other running software, and many more variables [1].

#### USB and Ethernet:

These times are quite predictable. Software issues mentioned above are important—but, in terms of hardware, the times will be consistent. The device communication does not consume a major portion of total USB or Ethernet bandwidth. Therefore, the overhead times listed are typically maintained even with substantial activity on the bus.

#### WiFi - T7-Pro Only:

WiFi latency tends to vary more than USB or Ethernet latency. With a solid connection, most WiFi packets have an overhead of 3 to 8 ms, but many will take longer. For example, a test was done in a typical office environment of 1000 iterations that produced an average time of 7.0 ms. The results were:

- 92% of the packets took 3-8 ms,
- 99% took < 30 ms,
- and 3 packets took 300 ms.

All WiFi tests were done with an RSSI between -40 (very strong) and -70 (good). An RSSI less than -75 generally reflects a weak connection, causing a greater number of packets retries. An RSSI greater than -35 reflects a very strong connection, typically within a few feet of the access point. This also results in a greater numbers of retries due to saturation of the RF signal.

## 19 May 2019

Analog to digital conversions (ADC) will increase the command-response time depending on the number of channels, the input gain (T7), and the resolution index being used. The following tables list conversion times for various different settings when reading a single analog input channel. The total command-response time (CRT) when reading analog inputs is equal to the overhead time from tables A.1.1 and A.1.2 added to the conversion times for the requested channels:

CRT (milliseconds) = overhead + (#AINs \* AIN Sample Time)

| Resolution | Effective   | Effective   | AIN<br>Sample |
|------------|-------------|-------------|---------------|
| Index      | Resolution  | Resolution  | Time          |
|            | [bits]      | [mV]        | [ms/sample]   |
| High-V     | AIN3)       |             |               |
| 1          | 11.0        | 10.4        | 0.07          |
| 2          | 11.4        | 7.7         | 0.11          |
| 3          | 12.3        | 4.2         | 0.16          |
| 4          | 12.9        | 2.7         | 0.29          |
| 5*         | 13.2        | 2.2         | 0.51          |
| Low-Voltag | ge Channels | (Applicable | FIO & EIO)    |
| 1          | 10.8        | 1.2         | 0.07          |
| 2          | 11.6        | 0.69        | 0.11          |
| 3          | 12.0        | 0.52        | 0.16          |
| 4          | 12.2        | 0.43        | 0.29          |
| 5*         | 12.8        | 0.29        | 0.51          |

Table A.1.3. Typical C-R milliseconds per sample, T4.

\* = Default command-response ResolutionIndex for the T4.

| Resolution | Effective  | Effective   | AIN<br>Sample |
|------------|------------|-------------|---------------|
| Index      | Resolution | Resolution  | Time          |
|            | [bits]     | [μV]        | [ms/sample]   |
|            | Gain/Rang  |             | [             |
| 1          | 16.0       | 316         | 0.04          |
| 2          | 16.5       | 223         | 0.04          |
| 3          | 17.0       | 158         | 0.1           |
| 4          | 17.5       | 112         | 0.1           |
| 5          | 17.9       | 84.6        | 0.2           |
| 6          | 18.3       | 64.1        | 0.3           |
| 7          | 18.8       | 45.3        | 0.6           |
| 8*         | 19.1       | 36.8        | 1.1           |
| 9**        | 19.6       | 26.0        | 3.5           |
| 10         | 20.5       | 14.0        | 13.4          |
| 11         | 21.3       | 8.02        | 66.2          |
| 12         | 21.4       | 7.48        | 159           |
|            | Gain/Rang  | je:10/±1V   |               |
| 1          | 15.4       | 47.9        | 0.2           |
| 2          | 16.0       | 31.6        | 0.2           |
| 3          | 16.5       | 22.3        | 0.6           |
| 4          | 16.9       | 16.9        | 0.6           |
| 5          | 17.4       | 12.0        | 1.2           |
| 6          | 17.9       | 8.46        | 2.3           |
| 7          | 18.3       | 6.41        | 2.6           |
| 8*         | 18.7       | 4.86        | 3.1           |
| 9**        | 19.5       | 2.79        | 3.5           |
| 10         | 20.5       | 1.40        | 13.4          |
| 11         | 21.4       | 0.748       | 66.2          |
| 12         | 21.5       | 0.698       | 159           |
|            | Gain/Range | : 100/±0.1V |               |
|            |            |             |               |

Table A.1.4. Typical C-R milliseconds per sample, T7.

| 2   | 12.2       | <b>2</b> 9.5 | <b>2</b> :0 |
|-----|------------|--------------|-------------|
| 2   | 14:2       | 44:0         | 2:0         |
| 3   | 14.7       | 7.78         | 5.1         |
| 4   | 15.2       | 5.50         | 5.1         |
| 5   | 15.7       | 3.89         | 5.2         |
| 6   | 16.3       | 2.57         | 10.3        |
| 7   | 16.7       | 1.94         | 10.6        |
| 8*  | 17.2       | 1.37         | 11.1        |
| 9** | 18.3       | 0.641        | 3.5         |
| 10  | 19.1       | 0.368        | 13.4        |
| 11  | 19.6       | 0.260        | 66.2        |
| 12  | 19.7       | 0.243        | 159         |
| G   | ain/Range: | 1000/±0.01V  |             |
| 1   | 10.9       | 10.8         | 5.0         |
| 2   | 12.3       | 4.10         | 10.0        |
| 3   | 12.7       | 3.11         | 10.1        |
| 4   | 13.3       | 2.05         | 10.1        |
| 5   | 13.8       | 1.45         | 10.2        |
| 6   | 14.4       | 0.96         | 10.3        |
| 7   | 14.7       | 0.778        | 10.6        |
| 8*  | 15.0       | 0.632        | 11.1        |
| 9** | 15.4       | 0.479        | 3.5         |
| 10  | 16.1       | 0.295        | 13.4        |
| 11  | 16.4       | 0.239        | 66.2        |
| 12  | 16.4       | 0.239        | 159         |

\* = Default command-response ResolutionIndex for the T7.

\*\* = Default command-response ResolutionIndex for the T7-Pro.

### **Streaming Data Rates**

The fastest data rates on T-series devices occur when operating in stream mode. Much of the command-response overhead is eliminated in stream mode because the device is responsible for initiating IO operations. The device collects scans in its stream buffer, then the host application retrieves multiple scans at once. The end result is a continuous data stream, sampled at regular intervals, collected with a minimum number of communication packets [2.].

There is an important distinction between scans and samples. Definitions are as follows:

- Address: Also called a *channel*. An address usually returns the value of 1 input connection.
- Sample: A reading from one address.
- Scan: One reading from every address in the scan list.
- Scan list: The list of one or more addresses in a scan.

The scan rate is the rate at which scans are collected. It is a fraction of the sample rate, where the fraction is the inverse of the number of channels being read in a single scan. The scan rate is defined as:

ScanRate = SampleRate / NumAddresses

The sample rate and scan rate are equal when the NumAddresses is 1.

**T4 Stream Rates** 

he T4 has a **typical maximum sample rate** of 50 ksamples/second. This maximum is reflected in the first row of data in the following table (highlighted). The scan rates reported are the maximum sample rates divided by the number of channels in the scan list (within  $\sim$ 10%).

The scan rates in the following tables are continuous over USB or Ethernet.

The scan rate is defined as (see "Streaming Data Rates" above):

ScanRate = SampleRate / NumAddresses

 Table A.1.5. T4 Stream: Scan rates for different values of resolution index. Applies to USB and Ethernet.

 Applies to all streamable addresses including low-voltage and high-voltage analog inputs.

|                          |      | Maximum | Scan Rate        |        | Maximum Sample Rate |
|--------------------------|------|---------|------------------|--------|---------------------|
|                          | 1    | 2       | 4                | 8      | >1 Channel          |
|                          | [Hz] | [Hz]    | Channels<br>[Hz] | [Hz]   | [Hz]                |
| Resolution Index =<br>1* | 50k  | 25k     | 12.5k            | 6.25k  | 50k                 |
| Resolution Index =<br>2  | 15k  | 7.5k    | 3.75k            | 1.875k | 15k                 |
| Resolution Index =<br>3  | 8k   | 4k      | 2k               | 1k     | 8k                  |
| Resolution Index =<br>4  | 4k   | 2k      | 1k               | 500    | 4k                  |
| Resolution Index =<br>5  | 2k   | 1k      | 500              | 250    | 2k                  |

\* Default stream ResolutionIndex for the T4.

 Table
 A.1.6.
 T4
 Stream: Typical noise and interchannel delay values depending on resolution index.

| Resolution | Peak-to-<br>Peak | Interchannel |
|------------|------------------|--------------|
| Index      | Noise            | Delay        |
|            | [12-bit          | [uo]         |
|            | counts]          | [µs]         |
|            |                  |              |
| 1*         | ±4               | 40/13**      |
| 2          | ±3               | 47           |
| 3          | ±2.5             | 121          |
| 4          | ±2               | 230          |
| 5          | ±1.5             | 446          |

 $^{*}$  Default stream ResolutionIndex for the T4.  $^{**}$  40  $\mu s$  for sample rate <= 20k. 13  $\mu s$  for sample rate > 20k.

#### **T7 Stream Rates**

- Ethernet can usually maintain just under 120 ksamples/second.
- USB generally maxes out right around 100 ksamples/second.
- When using WiFi, the device can acquire data at the fastest rates, but transfer of data to the host is limited to about 1 ksamples/second, so the fastest stream rates cannot be maintained continuously. In this case, stream-burst can be used rather than continuous stream, where each stream is limited to a specified number of scans that fits in the device's stream buffer. For highspeed wireless streaming, use the Ethernet connection with an external Ethernet-WiFi bridge.

The T7 has a **typical maximum sample rate** of 100 ksamples/second. This maximum sample rate is achievable when a stream is configured with RANGE =  $\pm 10V$  and RESOLUTION\_INDEX = 0 or 1 [3.]. This maximum is reflected in the first row of data in table A.1.4

The scan rates in the following tables are continuous over USB or Ethernet.

The scan rate is defined as (see "Streaming Data Rates" above):

ScanRate = SampleRate / NumAddresses

 Table A.1.7.
 T7 Stream: Scan rates over various gain, resolution index, channel count combinations.

 Applies to USB and Ethernet.

|                         | Gain :           |         |          | Maximum<br>Sample<br>Rate |          |            |
|-------------------------|------------------|---------|----------|---------------------------|----------|------------|
|                         | Range            | 1       | 2        | 4                         | 8        | >1 Channel |
|                         |                  | Channel | Channels | Channels                  | Channels |            |
|                         |                  | [Hz]    | [Hz]     | [Hz]                      | [Hz]     | [Hz]       |
|                         | 1 : ±10V         | 100k    | 50k      | 25k                       | 12.5k    | 100k       |
| <b>Resolution Index</b> | 10 : ±1V         | 100k    | 4.1k     | 1.4k                      | 585      | 8.2k       |
| = 1*                    | 100 : ±0.1V      | 100k    | 850      | 315                       | 120      | 1.7k       |
|                         | 1000 : ±0.01V    | 100k    | N.S.     | N.S.                      | N.S.     | N.S.       |
|                         | 1 : ±10V         | 48k     | 19.8k    | 9.0k                      | 4.0k     | 39.6k      |
| Resolution Index        | 10 : ±1V         | 48k     | 3.6k     | 1.3k                      | 550      | 7.2k       |
| = 2                     | 100 : ±0.1V      | 48k     | 400      | N.S.                      | N.S.     | 800        |
| = 2                     | 1000:<br>±0.01V  | 48k     | N.S.     | N.S.                      | N.S.     | N.S.       |
|                         | 1 : ±10V         | 22k     | 9.9k     | 4.5k                      | 2.4k     | 19.8k      |
|                         | 10 : ±1V         | 22k     | 1.4k     | 500                       | 225      | 2.8k       |
| Resolution Index        | 100 : ±0.1V      | 22k     | N.S.     | N.S.                      | N.S.     | N.S.       |
| = 3                     | 1000 :<br>±0.01V | 22k     | N.S.     | N.S.                      | N.S.     | N.S.       |
|                         | 1 : ±10V         | 11k     | 4.9k     | 2.2k                      | 1.3k     | 9.8k       |
| Deservation Indeed      | 10 : ±1V         | 11k     | 1.3k     | 45                        | N.S.     | 2.6k       |
| Resolution Index<br>= 4 | 100 : ±0.1V      | 11k     | N.S.     | N.S.                      | N.S.     | N.S.       |
| = 4                     | 1000 :<br>±0.01V | 11k     | N.S.     | N.S.                      | N.S.     | N.S.       |
|                         | 1 : ±10V         | 5500    | 2.2k     | 990                       | 630      | 4.4k       |
|                         | 10 : ±1V         | 5500    | 630      | 23                        | N.S.     | 1.3k       |
| Resolution Index        | 100 : ±0.1V      | 5500    | N.S.     | N.S.                      | N.S.     | N.S.       |
| = 5                     | 1000 :<br>±0.01V | 5500    | N.S.     | N.S.                      | N.S.     | N.S.       |
|                         | 1 : ±10V         | 2500    | 1.3k     | 630                       | 315      | 2.6k       |
| Decelution Index        | 10 : ±1V         | 2500    | 320      | N.S.                      | N.S.     | 640        |
| Resolution Index<br>= 6 | 100 : ±0.1V      | 2500    | N.S.     | N.S.                      | N.S.     | N.S.       |
| = 0                     | 1000 :<br>±0.01V | 2500    | N.S.     | N.S.                      | N.S.     | N.S.       |
|                         | 1:±10V           | 1200    | 650      | 315                       | N.S.     | 1.3k       |
| Decolution Index        | 10:±1V           | 1200    | 220      | N.S.                      | N.S.     | 440        |
| Resolution Index<br>= 7 | 100 : ±0.1V      | 1200    | N.S.     | N.S.                      | N.S.     | N.S.       |
| = 1                     | 1000 :<br>±0.01V | 1200    | N.S.     | N.S.                      | N.S.     | N.S.       |
|                         | 1 : ±10V         | 600     | 315      | N.S.                      | N.S.     | 630        |
| Decelution Ind          | 10 : ±1V         | 600     | 200      | N.S.                      | N.S.     | 400        |
| Resolution Index        | 100 : ±0.1V      | 600     | N.S.     | N.S.                      | N.S.     | N.S.       |
| = 8                     | 1000 :<br>±0.01V | 600     | N.S.     | N.S.                      | N.S.     | N.S.       |

N.S. indicates settings not supported in stream mode.

\* Default stream ResolutionIndex for the T7.

The maximum scan rate will decrease at higher resolution index and range settings simply because analog conversions take longer to complete. Table A.1.5 illustrates how analog conversion times increase at different resolution index and range settings.

 Table
 A.1.8.
 T7 Stream: Typical noise and interchannel delay values depending on range and resolution index.

| 5          | Peak-to-   |              |
|------------|------------|--------------|
| Resolution | Peak       | Interchannel |
| Index      | Noise      | Delay        |
|            | [16-bit    | [µs]         |
|            | counts]    |              |
|            | n/Range: 1 |              |
| 1*         | ±3.0       | 15/8**       |
| 2          | ±2.0       | 25           |
| 3          | ±1.5       | 45           |
| 4          | ±1.0       | 90           |
| 5          | ±1.0       | 170          |
| 6          | ±0.5       | 335          |
| 7          | ±0.5       | 670          |
| 8          | ±0.5       | 1,335        |
|            | n/Range: 1 |              |
| 1*         | ±4.5       | 210          |
| 2          | ±3.0       | 220          |
| 3          | ±2.0       | 545          |
| 4          | ±1.5       | 585          |
| 5          | ±1.0       | 1,200        |
| 6          | ±0.5       | 2,415        |
| 7          | ±0.5       | 2,750        |
| 8          | ±0.5       | 3,415        |
|            | Range: 10  | 0/±0.1V      |
| 1*         | ±12.0      | 1,040        |
| 2          | ±9.0       | 2,105        |
| 3          | N.S.       | N.S.         |
| 4          | N.S.       | N.S.         |
| 5          | N.S.       | N.S.         |
| 6          | N.S.       | N.S.         |
| 7          | N.S.       | N.S.         |
| 8          | N.S.       | N.S.         |
| Gain/R     | ange: 100  | 0/±0.01V     |
| 1*         | N.S.       | N.S.         |
| 2          | N.S.       | N.S.         |
| 3          | N.S.       | N.S.         |
| 4          | N.S.       | N.S.         |
| 5          | N.S.       | N.S.         |
| 6          | N.S.       | N.S.         |
| 7          | N.S.       | N.S.         |
| 8          | N.S.       | N.S.         |
|            | -          | -            |

N.S. (Not Supported) indicates settings not supported in stream mode. \* Default stream ResolutionIndex for the T7.

\*\* 15  $\mu$ s for sample rate <= 60k. 8  $\mu$ s for sample rate > 60k.

#### Interchannel Delay:

Interchannel delay is the time between each sample within a scan. For example, say 3 channels are streamed at 1000 scans/second with ResolutionIndex=1 and Range=10. That is a sample rate of 3000 samples/second, so from the table above the interchannel delay is 15  $\mu$ s. The stream interrupt will fire every 1000  $\mu$ s, at which time it takes about 5  $\mu$ s until the 1st channel is sampled, then 15  $\mu$ s later the 2nd channel is sampled, and then about 965  $\mu$ s later the next scan starts.

What if in the above example we wanted the 8 µs delay rather than 15 µs? The sample rate must be greater than 60 ksamples/second for that, so

19 May 2019 the solution is increase sample rate by scanning more channels (channels can be repeated in the scan list) or scanning faster and discarding the extra data.

The interchannel delay is a fixed time with little jitter, so the known time can be accounted for in user software to adjust phase if those microseconds are important. As an alternative to using the table above, the user can measure interchannel delay on their device by using a scope to look at the SPC timing output described in the <u>Stream Mode</u> section.

#### Notes:

1. Various software issues need consideration when implementing a feedback loop that executes at the desired time interval. Some considerations are: thread priority, logging to file, updating the screen, and other programs running on the machine.

2. The number of packets used to retrieve stream data depends on the number of data points allowed to accumulate in the stream buffer.

3. Setting the resolution index to 0 (default) in stream mode is equivalent to a resolution equal to 1. The default resolution index in stream mode behaves different than command-response mode.

# A-2 Digital I/O [T-Series Datasheet]

Log in or register to post comments

#### **General Info**

T-series Digital Input/Output lines information:

#### Table A2-1. IO Information

| Parameter                     | <b>Conditions</b> | <u>Min</u> | Typical | <u>Max</u> | <u>Units</u> |
|-------------------------------|-------------------|------------|---------|------------|--------------|
|                               |                   |            |         |            |              |
| Low Level Input               |                   | -0.3       |         | 0.5        | Volts        |
| Voltage                       |                   | 0.0        |         | 0.0        | VOILO        |
| High Level Input              |                   | 2.64       |         | 5.8        | Volts        |
| Voltage                       |                   | 2.04       |         | 0.0        | VOILO        |
| Hysteresis Voltage            |                   |            |         |            |              |
| [1]                           |                   |            |         |            |              |
| Low to High                   |                   |            |         | 1.15       | Volts        |
| Transition                    |                   |            |         | 1.10       | Volto        |
| High to Low                   |                   | 0.90       |         |            | Volts        |
| Transition                    |                   | 0.00       |         |            | 1 0110       |
| Maximum Input<br>Voltage [2]  | FIO               | -10        |         | 10         | Volts        |
|                               | EIO/CIO/MIO       | -6         |         | 6          | Volts        |
| Output Low Voltage            |                   |            | 0.04    |            |              |
| [3][4]                        | No Load           |            | 0.01    |            | Volts        |
| FIO                           | Sinking 1 mA      |            | 0.55    |            | Volts        |
| EIO/CIO                       | Sinking 1 mA      |            | 0.15    |            | Volts        |
| EIO/CIO                       | Sinking 5 mA      |            | 0.75    |            | Volts        |
| Output High Voltage<br>[3][4] | No Load           |            | 3.3     |            | Volts        |
| FIO                           | Sourcing 1<br>mA  |            | 2.75    |            | Volts        |
| EIO/CIO                       | Sourcing 1<br>mA  |            | 3.15    |            | Volts        |
| EIO/CIO                       | Sourcing 5<br>mA  |            | 2.6     |            | Volts        |
| Short Circuit Current [3][4]  | FIO               |            | 6.3     |            | mA           |
|                               | EIO/CIO/MIO       |            | 22.9    |            | mA           |
| Output Impedance [3][4]       | FIO               |            | 550     |            | Ω            |
|                               | EIO/CIO/MIO       |            | 180     |            | Ω            |
|                               |                   |            |         |            |              |

[1] The "Low Level" and "High Level" input voltage specify input voltage ranges guaranteed to produce the correct logic

state at any digital input. The "Hysteresis Voltage" represents the voltage where a logic transition will actually occur. Input hysteresis will result in different transition voltages, depending on transition from HIGH to LOW or LOW to HIGH logic states.

Device a series of the device of the device. Protection works whether the device is powered or not, but continuous voltages over 5.8 volts or less than -0.3 volts are not recommend when the device is unpowered, as the voltage will attempt to supply operating power to the device possibly causing poor start-up behavior.

[3] These specifications provide the answer to the question. "How much current can the digital I/O sink or source?". For instance, if EIO0 is configured as output-high and shorted to ground, the current sourced by EIO0 is configured as outputhigh and shorted to ground, the current sourced by EIO0 into ground will be about 16 mA (3.3/180). If connected to a load that draws 5 mA, EIO0 can provide that current but the voltage will droop to about 2.4 volts instead of the nominal 3.3 volts. If connected to a 180 ohm load to ground, the resulting voltage and current will be about 1.65 volts @ 9 mA.

[4] It is recommended to use the EIO/CIO digital I/O lines for UART, SPI, I<sup>2</sup>C, 1-Wire, and other digital communication protocols.

#### Extended Features

T-series DIO-EF information:

Table A2-2. DIO extended features information

| Extended Features                                                                                                                                   | <b>Conditions</b>           | Min    | Typical    | Max      | <u>Units</u> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|------------|----------|--------------|
|                                                                                                                                                     |                             |        |            |          |              |
| Frequency Output [1]                                                                                                                                |                             | 0.02   |            | 5 M      | Hz           |
|                                                                                                                                                     |                             |        |            |          |              |
| Counter Input Frequency [2]                                                                                                                         |                             |        |            | 5        | MHz          |
| Minimum High & Low Time [2]                                                                                                                         |                             |        |            | 50       | ns           |
| "Interrupt" Total Edge Rate [3][4]                                                                                                                  | No Stream                   |        |            | 70k      | edges/s      |
|                                                                                                                                                     | T7<br>Streaming<br>@ 50 kHz |        |            | 20k      | edges/s      |
|                                                                                                                                                     | T4<br>Streaming<br>@ 20 kHz |        |            | 20k      | edges/s      |
| [1] Frequencies up to 40MHz are                                                                                                                     | nossible but                | they : | aro hoavi  | ly filte | ared         |
| <ol> <li>Frequencies up to 40MHz are possible, but they are heavily filtered.</li> <li>Hardware counters. 0 to 3.3 volt square wave.</li> </ol>     |                             |        |            |          |              |
| [3] This is for the "Interrupt" modes. To avoid missing edges, keep the total number of applicable edges on all applicable timers below this limit. |                             |        |            |          |              |
| [4] Excessive processor loading of                                                                                                                  | could reduce t              | hese   | limits fur | ther.    |              |

#### Serial Communication

T-series serial communication abilities information is below. T-series devices use 3.3V logic levels and provide 5V output along the VS screw terminal. Some ICs require the same logic level as provided to the chip's VCC line so extra steps may be required to integrate specific sensors.

Table A2-3. Serial communication information

| Serial<br>Communication | <u>Conditions</u> | <u>Min</u> | <u>Max</u> | <u>Units</u> |
|-------------------------|-------------------|------------|------------|--------------|
|                         |                   |            |            |              |
| SPI                     |                   |            |            |              |

| Characteristics<br>Frequencies | 0.08718 | 870 | kHz   |
|--------------------------------|---------|-----|-------|
|                                |         |     |       |
| 12C                            |         |     |       |
| Characteristics                |         |     |       |
| Clock                          | 9.3     | 472 | kH7   |
| Frequencies                    | 3.5     | 472 | κι iΖ |

# A-3 Analog Input [T-Series Datasheet]

Log in or register to post comments

Please see device-specific subsections below.

# A-3-1 T4 Analog Input [T-Series Datasheet]

Log in or register to post comments

Please see subsections below.

# A-3-1-1 T4 AIN General Specs [T-Series Datasheet]

Log in or register to post comments

### Τ4

This T4 section is under construction. Please check back later for correct information. In the meantime look at the <u>J3 analog</u> inputs specs which are almost identical to the T4.

Table A.3-1. T4 Analog Input Information. Specifications at 25 degrees C and Vusb/Vext = 5.0V, except where noted.

| Parameter                                                                                                   | Conditions                 | Min      | Typical  | Max  | Units  |
|-------------------------------------------------------------------------------------------------------------|----------------------------|----------|----------|------|--------|
| -                                                                                                           |                            | _        |          |      |        |
| General                                                                                                     |                            |          |          |      |        |
| USB Cable Length                                                                                            |                            |          |          | 5    | meters |
| Supply Voltage                                                                                              |                            | 4        | 5        | 5.25 | volts  |
| Supply Current (1)                                                                                          | Hardware V1.2+             |          | 50       |      | mA     |
| Operating Temperature                                                                                       |                            | -40      |          | 85   | °C     |
| Clock Error                                                                                                 | -40 to 85 °C               |          |          | 1.5  | %      |
| Typ. Command Execution Time (2)                                                                             | USB high-high              | 0.6      |          |      | ms     |
|                                                                                                             | USB other                  | 4        |          |      | ms     |
| VS Outputs                                                                                                  |                            |          |          |      |        |
| Typical Voltage (3)                                                                                         | Self-Powered               | 4.75     | 5        | 5.25 | volts  |
|                                                                                                             | Bus-Powered                | 4        | 5        | 5.25 |        |
| Maximum Currrent (3)                                                                                        | Self-Powered               |          | 450      |      | mA     |
|                                                                                                             | Bus-Powered                |          | 50       |      | mA     |
|                                                                                                             |                            |          |          |      |        |
| (1) Typical current drawn by the                                                                            | T4 itself, not including a | any user | connecti | ons. |        |
| (2) Total typical time to execute a<br>Measured by timing a Windows a<br>function. See Section 3.1 for more | application that perform   |          |          |      |        |

(3) These specifications are related to the power provided by the host/hub. Self- and bus-powered describes the host/hub, not the U3. Self-powered would apply to USB hubs with a power supply, all known desktop computer USB hosts, and some notebook computer USB hosts. An example of bus-powered would be a hub with no power supply, or many PDA ports. The current rating is the maximum current that should be sources through the U3 and out of the Vs terminals.

nouon. eee eeeuen e. nor more uning mormauen.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conditions                                        | Min                | Typical                 | Max    | Units       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------|-------------------------|--------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                    |                         |        |             |
| Analog Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                    |                         |        |             |
| Typical input Range (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Single-Ended, LV                                  | 0                  |                         | 2.44   | volts       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Differential, LV                                  | -2.44              |                         | 2.44   | volts       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Special, LV                                       | 0                  |                         | 3.6    | volts       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Single-Ended, HV                                  | -10.3              |                         | 10.3   | volts       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Special, HV                                       | -10.3              |                         | 20.1   | volts       |
| Max AIN Voltage to GND (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Valid Readings, LV                                | -0.3               |                         | 3.6    | volts       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Valid Readings, HV                                | -12.8              |                         | 20.1   | volts       |
| Max AIN Voltage to GND (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No Damage, FIO                                    | -10                |                         | 10     | volts       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No Damage, EIO                                    | -6                 |                         | 6      | volts       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No Damage, HV                                     | -40                |                         | 40     | volts       |
| Input Impedance (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LV                                                |                    | 40                      |        | MΩ          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HV                                                |                    | 1.3                     |        | MΩ          |
| Source Impedance (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Long Settling Off, LV                             |                    |                         | 10     | kΩ          |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Long Settling On, LV                              |                    |                         | 200    | kΩ          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Long Settling Off, HV                             |                    |                         | 1      | kΩ          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Long Settling On, HV                              |                    |                         | 1      | kΩ          |
| Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All Ranges                                        |                    | 12                      |        | bits        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Single-Ended, LV, 0-<br>2.44                      |                    | 0.6                     |        | mV          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Differential, LV, ±2.44                           |                    | 1.2                     | -      | mV          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Special, LV, 0-3.6                                |                    | 1.2                     |        | mV          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Single-Ended, HV, ±10                             |                    | 5.0                     |        | mV          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Special, HV, -10 to<br>+20                        |                    | 10.0                    |        | mV          |
| Integral Linearity Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120                                               |                    | ±0.05                   |        | % FS        |
| Differential Linearity Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                    | ±0.00                   |        | counts      |
| Absolute Accuracy (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Single-Ended %                                    |                    | ±0.13                   |        | % FS        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Single-Ended LV volts                             |                    | ±3.2                    |        | mV          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Single-Ended HV volts                             |                    | ±26.8                   |        | mV          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Differential %                                    |                    | ±0.25                   |        | % FS        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Differential LV volts                             |                    | ±6.4                    |        | mV          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Differential HV volts                             |                    | N/A                     |        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Special 0-3.6 %                                   |                    | ±0.25                   |        | % FS        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Special LV volts                                  |                    | ±6.4                    |        | mV          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Special HV volts                                  |                    | ±53.6                   |        | mV          |
| Temperature Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                    | 15                      |        | ppm/°(      |
| Noise (Peak-To-Peak) (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quick Sample Off                                  |                    | ±1                      |        | counts      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quick Sample On                                   |                    | ±2                      |        | counts      |
| Effective Resolution (RMS) (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quick Sample Off                                  |                    | >12                     |        | bits        |
| Noise-Free Resolution (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quick Sample Off                                  |                    | 11                      |        | bits        |
| Command/Response Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See Section 3.1                                   |                    |                         |        | 0.10        |
| Stream Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | See Section 3.2                                   |                    |                         |        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                    |                         |        |             |
| <ul> <li>* LV specs refer to low voltage a<br/>HV. HV specs refer to high volta<br/>only.</li> <li>(4) Note that these are typical input</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ge analog inputs which a put ranges. The actual m | ire ava<br>iinimur | ilable on<br>n on the l | the U3 | -HV<br>tage |
| inputs might not go all the way to<br>DAC1 disabled on hardware vers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sion < 1.30.                                      |                    |                         |        | e with      |
| (5) This is the maximum voltage<br>measurements. Note that a difference of the second se |                                                   |                    |                         |        | volts,      |

(6) Maximum voltage, compared to ground, to avoid damage to the device. Protection

| resenting a capacitive load to th<br>resistive level-shifter/divider. Th                     |                          |           |            |          |          |
|----------------------------------------------------------------------------------------------|--------------------------|-----------|------------|----------|----------|
| source impedance. As long as th                                                              |                          |           |            |          |          |
| no substantial errors due to impe                                                            | •                        |           | tino vaic  |          |          |
| (8) Absolute error includes INL, E                                                           |                          | es of int | ernal err  | or at 25 | C and    |
| VS=5.0V. To equate the percenta                                                              |                          |           |            |          |          |
| percentage. For a single-ended                                                               |                          |           |            |          |          |
| about 2.4 volts, so 2.4 * 0.0013 g                                                           |                          |           |            |          |          |
| using the normal range the span                                                              | is about 20 volts, so 20 | * 0.001   | 3 gives ±  | .0.026 v | olts.    |
| Differential readings are not calib                                                          | rated on high voltage c  | hannels   |            |          |          |
| (9) Measurements taken with AIN                                                              | connected to a 2.048     | referenc  | e (REF1    | 91 from  | Analog   |
| Devices) or GND. All "counts" da                                                             |                          |           |            |          | is       |
| determined by taking 128 reading                                                             | gs and subtracting the n | ninimum   | value fro  | om the   |          |
| maximum value.                                                                               |                          |           |            |          |          |
| (10) Effective (RMS) data is dete                                                            | rmined from the standa   | rd devia  | tion of 12 | 28 readi | ings. In |
| other words, this data represents                                                            | _most_ readings, when    | reas noi  | se-free d  | ata repr | resents  |
| all readings.                                                                                |                          | -         |            |          |          |
|                                                                                              |                          | _         |            |          |          |
|                                                                                              |                          |           |            |          |          |
| Parameter                                                                                    | Conditions               | Min       | Typical    | Max      | Units    |
|                                                                                              |                          |           |            |          |          |
| Analog Outputs (DAC)                                                                         |                          |           |            |          |          |
| Nominal Output Range (11)                                                                    | No Load                  | 0.04      |            | 4.95     | volts    |
| Desetation                                                                                   | @ ±2.5 mA                | 0.225     | 10         | 4.775    | volts    |
| Resolution                                                                                   |                          | _         | 10         |          | bits     |
| Absolute Accuracy                                                                            | 5% to 95% FS             | _         | ±5         |          | % FS     |
| Integral Linearity Error                                                                     |                          | _         | ±1         |          | counts   |
| Differential Linearity Error                                                                 |                          | _         | ±1         |          | counts   |
| Max Output Current (12)                                                                      | @ 2.0V                   | _         | 30         |          | mA       |
| Error Due To Loading (12)                                                                    | @ 100 µA                 | _         | 0.1        |          | %        |
|                                                                                              | @ 1 mA                   |           | 1          |          | %        |
| Source Impedance (12)                                                                        |                          |           | 50         |          | Ω        |
| Short Circuit Current (12,13)                                                                | 5V to GND                |           | 50         |          | mA       |
| Cutoff Frequency (14)                                                                        | -3 dB                    |           | 16         |          | Hz       |
| Time Constant (14)                                                                           |                          |           | 10         |          | ms       |
|                                                                                              |                          |           |            |          |          |
| Digital I/O, Timers, Counters                                                                |                          |           |            |          |          |
| Low Level Input Voltage                                                                      |                          | -0.3      |            | 0.8      | volts    |
| Hight Level Input Voltage                                                                    |                          | 2         |            | 5.8      | volts    |
| Maximum Input Voltage (15)                                                                   | FIO                      | -10       |            | 10       | volts    |
|                                                                                              | EIO/CIO                  | -6        |            | 6        | volts    |
| Output Low Voltage (16)                                                                      | No Load                  |           | 0          |          | volts    |
| FIO                                                                                          | Sinking 1 mA             |           | 0.55       |          | volts    |
|                                                                                              | Sinking 1 mA             |           | 0.18       |          | volts    |
|                                                                                              | Sinking 5 mA             |           | 0.9        |          | volts    |
| Output High Voltage (16)                                                                     | No Load                  |           | 3.3        |          | volts    |
| FIO                                                                                          | Sourcing 1 mA            |           | 2.75       |          | volts    |
| EIO/CIO                                                                                      | Sourcing 1 mA            |           | 3.12       |          | volts    |
| EIO/CIO                                                                                      | Sourcing 5 mA            |           | 2.4        |          | volts    |
| Short Circuit Current (16)                                                                   | FIO                      |           | 6          |          | mA       |
|                                                                                              | EIO/CIO                  |           | 18         |          | mA       |
| Input Impedance                                                                              | Pull-up to 3.3V          |           | 100        |          | kΩ       |
|                                                                                              | FIO                      |           | 550        |          | Ω        |
|                                                                                              | EIO/CIO                  |           | 180        | 0        | Ω        |
| Output Impedance (16)                                                                        |                          |           |            | 0        | MHz      |
| Output Impedance (16)<br>Counter Input Frequency (17)                                        | Hardware V1.21+          | _         |            | 8        |          |
| Output Impedance (16)<br>Counter Input Frequency (17)<br>Input Timer Total Edge Rate<br>(18) | No Stream, V1.21+        |           |            | 30000    | edges/s  |
| Output Impedance (16)<br>Counter Input Frequency (17)<br>Input Timer Total Edge Rate         |                          |           |            |          |          |

output voltage approaches GND.

| (12) If the output is set to 3.5 volts and sourcing 30 mA, there will be about 2.0 volts at |
|---------------------------------------------------------------------------------------------|
| the DAC pin due to the 50 ohms of series impedance. Each DAC output is driven by a          |
| channel on an AD8544 op-amp, powered by VS & GND, and then goes through                     |
| protection circuitry that includes 50 ohms of series impedance. The max output current is   |
| determined by 3 main factors: short circuit current, ability of AD8544 to sink/source near  |
| power rails (Figure 22 of AD8544 datasheet), and the 50 ohms of series impedance.           |
| (13) Continuous short circuit will not cause damage.                                        |
| (14) The DAC outputs are creating by filtering PWM signals, and the 2nd order 16 Hz         |
| output filter works great for the default PWM frequency of 732 Hz, but with lower           |
| frequency timer clocks the DAC outputs will be noisier. See Section 2.7 for more            |
| details. Time constant is the time it take for the output to settle 63% of the way towards  |
| a new value.                                                                                |
| (15) Maximum voltage to avoid damage to the device. Protection works whether the            |
| device is powered or not, but continuous voltages over 5.8 volts or less than -0.3 volts    |
| are not recommended when the U3 is unpowered, as the voltage will attempt to supply         |
| operating power to the U3 possible causing poor start-up behavior.                          |
| (16) These specifications provide the answer to the question: "How much current can         |
| the digital I/O sink or source?". For instance, if EIO0 is configured as output-high and    |
| shorted to ground, the current sourced by EIO0 into ground will be about 18 mA              |
| (3.3/180). If connected to a load that draws 5 mA, EIO0 can provide that current but the    |
| voltage will droop to about 2.4 volts instead of the nominal 3.3 volts. If connected to a   |
| 180 ohm load to ground, the resulting voltage and current will be about 1.65 volts @ 9 mA.  |
| (17) Hardware counters. 0 to 3.3 volt square wave. Limit 2 MHz with older hardware          |
| versions.                                                                                   |
| (18) To avoid missing edges, keep the total number of applicable edges on all applicable    |
| timers below this limit. See Section 2.9 for more information. Limit 10000 with older       |
| hardware versions.                                                                          |

# A-3-1-2 T4 Noise and Resolution [T-Series Datasheet]

Log in or register to post comments

## **T-series Appendix Analog Input Noise and Resolution (Referencable)**

#### ADC Noise and Resolution

T-series devices use an internal analog-to-digital converter (ADC) to convert analog voltage into digital representation. The ADC reports an analog voltage in terms of ADC counts, where a single ADC count is the smallest change in voltage that will affect the reported ADC value. A single ADC count is also known as the converter's least significant bit (LSB) voltage. The ADC's resolution defines the number of discrete voltages represented over a given input range. For example, a 16-bit ADC with a ±10 input range can report 65536 discrete voltages ( $2^{16}$ ) and has an LSB voltage of 0.305 mV ( $20 \text{ V} \div 2^{16}$ ).

The stated resolution for an ADC is a theoretical, best-case value assuming no channel noise. In reality, every ADC works in conjunction with external circuitry (amplifiers, filters, etc.) which all possess some level of inherent noise. The noise of supporting hardware, in addition to noise of the ADC itself, all contribute to the channel resolution. In general, the resolution for an ADC and supporting hardware will be less than what is stated for the ADC. The combined resolution for an in-system ADC is termed effective resolution. Simply put, the effective resolution is the equivalent resolution where analog voltages less than the LSB voltage are no longer differentiable from the inherent hardware noise.

The effective resolution is closely related to the error free code resolution (EFCR) or *flicker-free* code resolution. The EFCR represents the resolution on a channel immune to "bounce" or "flicker" from the inherent system noise. The EFCR is not reported in this appendix. However, it may be closely approximated by the following equation:

EFCR = effective resolution - 2.7 bits [1]

The T4 and the T7 offer user-selectable effective resolution through the resolution index parameter on any one AIN channel. Internally, the ADC hardware uses modified sampling methods to reduce noise. Valid resolution index values are:

- 0-5 for the T4
- 0-8 for the T7
- 0-12 for the T7-Pro [2][3]

Increasing the resolution index value will improve the channel resolution, but doing so will usually extend channel sampling times. See section 14.0 AIN for more information on the resolution index parameter and its use.

# T4 Appendix Analog Input Noise and Resolution (Referencable)

### Τ4

The T4 is a 12-bit class device. See <u>Appendix A-1</u> for typical effective resolution.

# A-3-1-3 T4 Signal Range [T-Series Datasheet]

Log in or register to post comments

## **T4 AIN Signal Range**

Analog inputs on the T4 are single-ended only. That means the voltage of a given input terminal is acquired versus GND, and thus the signal range is simply the same as the analog input ranges of  $\pm 10V$  or 0-2.5V discussed in various places. See <u>Appendix A-3</u> for further analog input specs.

# A-3-2 T7 Analog Input [T-Series Datasheet]

Log in or register to post comments

Please see the subsections below.

# A-3-2-1 T7 AIN General Specs [T-Series Datasheet]

Log in or register to post comments

### Т7

|                            | Conditions          | Min       | Typical | Мах   | Units |
|----------------------------|---------------------|-----------|---------|-------|-------|
|                            |                     |           |         |       |       |
| Typical Input Range [1]    | Gain=1              | -<br>10.5 |         | 10.1  | Volts |
| Max AIN Voltage to GND     | Valid               | -         |         | 11.5  | Volts |
| [2]                        | Readings            | 11.5      |         | 11.5  | VOILS |
| Max AIN Voltage to GND [3] | No Damage           | -20       |         | 20    | Volts |
| Input Bias Current [4]     |                     |           | 20      |       | nA    |
| Input Impedance [4]        |                     |           | 1       |       | GΩ    |
| Max Source Impedance       |                     |           | 1       |       | kΩ    |
| [4]                        |                     |           | 1       |       | K12   |
|                            |                     |           |         |       |       |
| Integral Linearity Error   | Range=10,<br>1, 0.1 |           |         | ±0.01 | %FS   |
|                            | Range=0.01          |           |         | ±0.1  | %FS   |
|                            |                     |           |         |       |       |
| Absolute Accuracy          | Range=10,<br>1, 0.1 |           |         | ±0.01 | %FS   |
|                            | Range=10            |           |         | ±2000 | μV    |
|                            | Range=1             |           |         | ±200  | μV    |
|                            | Range=0.1           |           |         | ±20   | μV    |
|                            | Range=0.01          |           |         | ±0.1  | %FS   |
|                            | Range=0.01          |           |         | ±20   | μV    |
| Temperature Coefficient    |                     |           | 15      |       | ppm/  |

 Table A.3-2. T7 Analog Input Information. All specs at room temperature unless otherwise noted.

| 1                                    | 1               | I     | Î.      | i.      | i.     |
|--------------------------------------|-----------------|-------|---------|---------|--------|
| Channel Crosstalk [5]                | < 1kHz          |       | -100    |         | dB     |
|                                      | 1kHz -<br>50kHz |       | 20      |         | dB/dec |
|                                      |                 |       |         |         |        |
| High-Speed ADC -3dB<br>Frequency [6] | Gain=1, 10      |       | 445     |         | kHz    |
|                                      | Gain=100        |       | 337     |         | kHz    |
|                                      | Gain=1000       |       | 63      |         | kHz    |
|                                      |                 |       |         |         |        |
| High-Res ADC -3dB<br>Frequency [7]   | See Note #7     |       |         |         |        |
|                                      |                 |       |         |         |        |
| Noise (Peak-To-Peak)                 | See A-3-2       |       |         | <1      | μV     |
| Effective Resolution (RMS)           | See A-3-2       |       |         | 22      | bits   |
| Noise-Free Resolution                | See A-3-2       |       |         | 20      | bits   |
|                                      |                 |       |         |         |        |
| [1] Differential or single-er        | nded            | •     | •       | •       | •      |
| [2] This is the maximum v            | oltage on any A | IN pi | n compa | ared to | ground |
| for valid measurements or            |                 |       |         |         |        |

for valid measurements on that channel. For single-ended readings on the channel itself, inputs are limited by the "Typical Input Range" above, and for differential readings consult Appendix A-3-2 <u>Signal</u> <u>Range</u>. Further, if a channel has over 13.0 volts compared to ground, readings on other channels could be affected. Because all even channels are on one front-end mux and all odd channels on a second front-end mux, an overvoltage (>13V) on a single channel will generally affect only even or only odd channels.

[3] Maximum voltage, compared to ground, to avoid damage to the device. Protection level is the same whether the device is powered or not.

[4] The key specification here is the maximum source impedance. As long as your source impedance is not over this value, there will be no substantial errors due to impedance problems. For source impedance greater than this value, more <u>settling time</u> might be needed.

[5] Typical crosstalk on a grounded AIN pin, with 20Vpp sine wave on adjacent AIN pin. An adjacent AIN pin refers to multiplexer channel location not channel number, e.g. AIN0-AIN2 or AIN1-AIN3 pairs.

[6] This is the bandwidth of the analog hardware. Any frequencies less than this will go through the analog system to the ADC and be part of the digitized waveform. For DC measurements this is of little concern as ResolutionIndex and averaging can be used to get rid of extra noise. For AC measurements, frequency components below the nyquist point can be removed after digitizing, but frequency components above the nyquist point must be removed before digitizing as they will alias. If unwanted signals with frequencies between the nyquist point and analog cutoff frequency are expected, and they are expected to have sufficient magnitude to be above the acceptable noise level, then an external hardware filter must be used (often called an anti-alias or anti-aliasing filter).

[7] The fixed -3dB frequencies from note 6 apply to the high-speed ADC (ResolutionIndex = 1-8), but the high-resolution ADC on the T7-Pro (ResolutionIndex = 9-12) has filtering at much lower frequencies. The frequency response at ResolutionIndex=12 is shown in Figure 22 of the AD7190 datasheet. For the response at ResIndex 9/10/11 multiply those x-axis values by 47.9/12.0/2.4. Figure 22 only shows up to 150 Hz, but know that all higher frequencies are also filtered out, except for a narrow passband at 307 kHz. The width of this passband is about 200 Hz at ResIndex=12 increasing to about 10000 Hz at ResIndex=9.

See also: Appendix A-3-2 Noise and Resolution

# T-series Appendix Analog Input Noise and Resolution (Referencable)

#### ADC Noise and Resolution

T-series devices use an internal analog-to-digital converter (ADC) to convert analog voltage into digital representation. The ADC reports an analog voltage in terms of ADC counts, where a single ADC count is the smallest change in voltage that will affect the reported ADC value. A single ADC count is also known as the converter's least significant bit (LSB) voltage. The ADC's resolution defines the number of discrete voltages represented over a given input range. For example, a 16-bit ADC with a ±10 input range can report 65536 discrete voltages ( $2^{16}$ ) and has an LSB voltage of 0.305 mV ( $20 \text{ V} \div 2^{16}$ ).

The stated resolution for an ADC is a theoretical, best-case value assuming no channel noise. In reality, every ADC works in conjunction with external circuitry (amplifiers, filters, etc.) which all possess some level of inherent noise. The noise of supporting hardware, in addition to noise of the ADC itself, all contribute to the channel resolution. In general, the resolution for an ADC and supporting hardware will be less than what is stated for the ADC. The combined resolution for an in-system ADC is termed effective resolution. Simply put, the effective resolution is the equivalent resolution where analog voltages less than the LSB voltage are no longer differentiable from the inherent hardware noise.

The effective resolution is closely related to the error free code resolution (EFCR) or *flicker-free* code resolution. The EFCR represents the resolution on a channel immune to "bounce" or "flicker" from the inherent system noise. The EFCR is not reported in this appendix. However, it may be closely approximated by the following equation:

EFCR = effective resolution - 2.7 bits [1]

The T4 and the T7 offer user-selectable effective resolution through the resolution index parameter on any one AIN channel. Internally, the ADC hardware uses modified sampling methods to reduce noise. Valid resolution index values are:

- 0-5 for the T4
- 0-8 for the T7
- 0-12 for the T7-Pro [2][3]

Increasing the resolution index value will improve the channel resolution, but doing so will usually extend channel sampling times. See section 14.0 AIN for more information on the resolution index parameter and its use.

## T7 Appendix Analog Input Noise and Resolution (Referencable)

### T7

The T7 has a 16-bit ADC. The T7-Pro has the same 16-bit ADC plus a lower speed 24-bit sigma-delta ADC.

#### Noise and Resolution Data

The data shown below summarizes typical effective resolutions and expected channel sampling times over all resolution index values. Data for the T7 and T7-Pro data are combined and presented together for convenience, where resolution index values 9-12 only apply to the T7-Pro.

The AIN sampling time is the typical amount of time required for the ADC hardware to make a single analog to digital conversion on any channel and is reported in milliseconds per sample. The AIN sampling time does not include command/response and overhead time associated with the host computer/application.

#### Noise and Resolution Test procedure

Noise and resolution data was generated by collecting 512 successive voltage readings, using a short jumper between the test channel and ground. The resulting data set represents typical noise measured on any one analog input channel in ADC counts. The effective resolution is calculated by subtracting the RMS channel noise (represented in bits) from 16-bits.

Effective Resolution = 16 bits - log<sub>2</sub> (RMS Noise [in ADC counts])

 Table A.3.1.1.
 T7 resolution data. Effective resolution and sampling times for various gains and resolution index settings. Resolution index settings 9-12 apply to the T7-Pro only.

| Resolution | Effective  | Effective    | AIN Sample       |
|------------|------------|--------------|------------------|
| Index      | Resolution | Resolution   | Time             |
|            | [bits]     | [µV]         | [ms/sample]      |
|            |            | ge: 1/±10V   |                  |
| 1          | 16.0       | 316          | 0.04             |
| 2          | 16.5       | 223          | 0.04             |
| 3          | 17.0       | 158          | 0.06             |
| 4          | 17.5       | 112          | 0.09             |
| 5          | 17.9       | 85           | 0.16             |
| 6          | 18.3       | 64           | 0.29             |
| 7          | 18.8       | 45           | 0.56             |
| 8          | 19.1       | 37           | 1.09             |
| 9          | 19.6       | 26           | 3.50             |
| 10         | 20.5       | 14           | 13.4             |
| 10         | 21.4       | 7.5          | 66.2             |
| 12         | 21.4       | 5.7          | 159              |
| 12         |            | ge: 10/±1V   | 100              |
| 1          | 15.4       | 48           | 0.23             |
| 2          | 16.0       | 32           | 0.23             |
| 3          | 16.5       | 22           | 0.23             |
| 4          | 16.9       | 17           | 0.55             |
| 5          | 17.4       | 17           | 1.15             |
| 6          | 17.4       | 8.5          | 2.28             |
| 7          | 18.3       | 6.4          | 2.55             |
| 8          | 18.7       | 4.9          | 3.08             |
| 9          | 19.5       | 2.8          | 3.50             |
| 10         | 20.5       | 1.4          | 13.4             |
| 10         | 21.4       | 0.7          | 66.2             |
| 12         | 21.7       | 0.6          | 159              |
| 12         |            | e: 100/±0.1V | 155              |
| 1          | 13.3       | 21           | 1.03             |
| 2          | 14.2       | 11           | 2.03             |
| 3          | 14.7       | 7.8          | 5.05             |
| 4          | 14.7       | 5.5          | 5.08             |
| 5          | 15.7       | 3.9          | 5.15             |
| 6          | 16.3       | 2.6          | 10.28            |
| 7          | 16.7       | 1.9          | 10.55            |
| 8          | 17.2       | 1.9          | 11.08            |
| 9          | 17.2       | 0.6          | 3.50             |
| 10         | 19.1       | 0.6          | 13.4             |
| 11         | 19.1       | 0.4          | 66.2             |
| 11         | 19.0       | 0.3          | 159              |
|            | Gain/Range |              |                  |
| 1          | 10.9       | 11           | <b>v</b><br>5.03 |
| 2          | 10.9       | 4.1          | 5.03<br>10.0     |
| 3          | 12.3       | 3.1          | 10.0             |
| 4          | 12.7       | 2.1          | 10.1             |
| 5          | 13.3       | 1.5          | 10.1             |
| 6          | 14.4       | 1.0          | 10.2             |
| 6          | 14.4       | 0.8          | 10.3             |
| -          | 14.7       | 0.8          | 10.6             |
| 8          | 15.0       | 0.6          | 3.50             |
| 9<br>10    | 15.4       |              | 3.50<br>13.4     |
|            |            | 0.3          |                  |
| 11         | 16.4       | 0.2          | 66.2<br>159      |
| 12         | 16.4       | 0.2          | 159              |

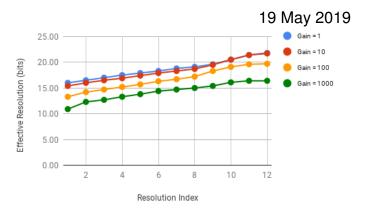



Figure A.3.1.2. T7 analog input effective resolution over various gains and resolution index settings.

### LSB Voltage Vs Resolution Index

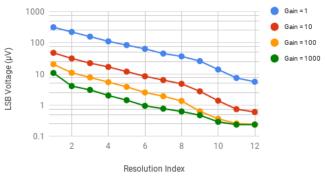
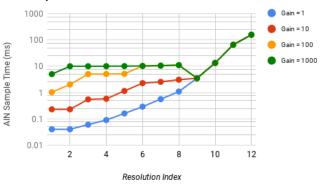
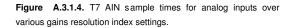





Figure A.3.1.3. T7 analog input LSB voltage over various gains and resolution index settings.

#### AIN Sample Time Vs Resolution Index





#### Notes:

[1] The equation used to approximate the EFCR is determined using +/-3.3 standard deviations from the RMS noise measured on an AIN channel.

[2] The default value for RESOLUTION\_INDEX is 0, which equates to 8 for T7 command-response reads, 9 for T7-Pro command-response reads, and 1 for T7 & T7-Pro stream reads

[3] The T7-Pro is equipped with a 24-bit delta-sigma ADC, in addition to the standard 16-bit ADC. Analog conversions occur on the 16-bit ADC when resolution index values 0-8 are used. Analog conversions occur on the 24-bit ADC when resolution index values 9-12 are used (command response mode only).

[4] The hi-resolution 24-bit ADC is not supported in stream mode.

# A-3-2-3 T7 Signal Range [T-Series Datasheet]

Log in or register to post comments

# **T7 AIN Signal Range**

3110411110443

The instrumentation amplifier in the T7 (see Figure 4.2-2) provides 4 different gains:

- x1 (RANGE is ±10 volts)
- x10 (RANGE is ±1 volts)
- x100 (RANGE is ±0.1 volts)
- x1000 (RANGE is ±0.01 volts)

The input ranges are straightforward for single-ended measurements, but can be a little tricky for<u>differential measurements</u> if neither channel (positive or negative) is at 0 volts.

The figures below show the approximate signal range of the T7 analog inputs at gains of x1 and x1000.

Input Common-Mode Voltage, known as V<sub>cm</sub>, is:

 $V_{cm} = (V_{pos} + V_{neg})/2$ 

The voltage of any input compared to GND should be within the VM+ and VM- rails by at least 1.5 volts, so if VM+ and VM- is the typical  $\pm$ 13 volts, the signals should be within  $\pm$ 11.5 volts compared to GND. See <u>Table A5-8</u> for more information on VM+ and VM-.

**Example #1** - invalid because  $V_{cm}$ =10.0 with  $V_{out}$ =10.0 is invalid:

Suppose a differential signal is measured, where:

- V<sub>pos</sub> is 10.05 volts compared to GND
- $\circ~V_{neg}$  is 9.95 volts compared to GND
- G=100 (RANGE=±0.1)

That means:

- V<sub>cm</sub>=10.0 volts,
- V<sub>diff</sub>=0.1 volts,
- and the expected  $V_{out}=10.0$  volts.

Figures for G=10 and G=100 are not shown, but  $V_{cm}$ =10.0 volts and  $V_{out}$ =10.0 volts is not valid at G=1 or G=1000, so it is not valid for gains in between.

Example #2 - invalid because Vpos compared to GND is too high:

Suppose a differential signal is measured, where:

- V<sub>pos</sub> is 12.0 volts compared to GND
- V<sub>neg</sub> is 8.0 volts compared to GND
- G=1 (RANGE=±10)

That means:

- V<sub>cm</sub>=10.0 volts,
- V<sub>diff</sub>=4.0 volts,
- and the expected  $V_{out}$ =4.0 volts.

This looks almost okay in the G=1 figure below, but the voltage of  $\gamma_{os}$  compared to GND is too high so this is not valid.

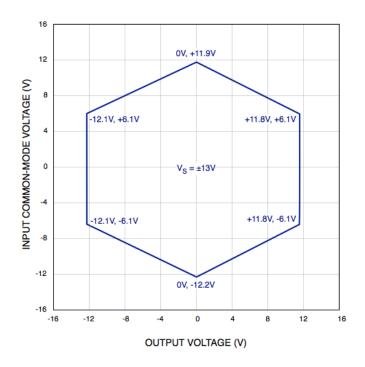
#### Example #3 - valid:

Suppose a single-ended signal is measured, where:

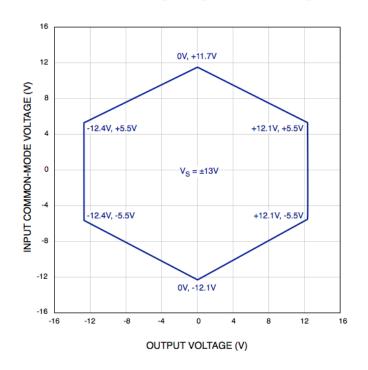
 $\circ~V_{pos}$  is 10.0 volts compared to GND

-

• G=1 (RANGE=±10)


-

That means:


- $\circ ~~V_{cm}{=}5.0~volts,$
- V<sub>diff</sub>=10.0 volts,
- $\circ~$  and the expected  $V_{out}{=}10.0$  volts.

This is fine according to the figure below.

Input Common-Mode Voltage Range vs. Output Voltage, G = 1



Input Common-Mode Voltage Range vs. Output Voltage, G = 1000



# A-4 Analog Output [T-Series Datasheet]

Log in or register to post comments

Specifications for analog output channels (DAC0 and DAC1) are shown below.

## Τ4

 Table A4-1. T4 DAC Information. All specs at room temperature unless otherwise noted.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conditions                                                                                                                                  | Min                                                                      | Typical                                                                                                  | Max                                                    | Unite                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conditions                                                                                                                                  | IVIIII                                                                   | Typical                                                                                                  | IVIAX                                                  | Units                                      |  |  |
| Nominal Output<br>Range [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No Load                                                                                                                                     | 0.01                                                                     |                                                                                                          | 4.98                                                   | Volts                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | @ ±2.5 mA                                                                                                                                   | 0.30                                                                     |                                                                                                          | 4.69                                                   | Volts                                      |  |  |
| Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                          | 10                                                                                                       |                                                        | Bits                                       |  |  |
| Absolute Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5% to 95%                                                                                                                                   |                                                                          | ±0.15                                                                                                    |                                                        | % FS                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |                                                                          | ±7.5                                                                                                     |                                                        | mV                                         |  |  |
| Integral Linearity<br>Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             |                                                                          |                                                                                                          | ±1                                                     | counts                                     |  |  |
| Differential Linearity<br>Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |                                                                          | ±0.1                                                                                                     | ±0.5                                                   | counts                                     |  |  |
| Noise [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                                                          | ±1                                                                                                       |                                                        | counts                                     |  |  |
| Source Impedance [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                                                          | 50                                                                                                       |                                                        | Ω                                          |  |  |
| Current Limit [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max to<br>GND                                                                                                                               |                                                                          | 30                                                                                                       |                                                        | mA                                         |  |  |
| Time Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                                          | 1                                                                                                        |                                                        | μs                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |                                                                          |                                                                                                          |                                                        |                                            |  |  |
| assume vS is 5.0 volts. Also, the ability of the DAC output<br>buffer to driver voltages close to the power rails, decreases<br>with increasing output current.<br>[2] TBD<br>[3] For currents up to about TBDmA, this source impedance<br>dominates the error due to loading. For example, if you load<br>DAC0 with a 1000 ohm resistor fromDAC0 to GND, and set<br>DAC0 to 3.0V, the actual voltage at theDAC0 terminal will be<br>about 3.0*1000/(50+1000) = 2.86V. For currents > TBDmA, you<br>increasingly get added droop due to the ability of the output<br>buffer to drive substantial current close to the power rails.<br>[4] The output buffer will limit current to about TBDmA and |                                                                                                                                             |                                                                          |                                                                                                          |                                                        |                                            |  |  |
| can maintain this value<br>for example, a 100 of<br>internal source imped<br>4.5V. A simple calcul<br>4.5/(50+100) = 30mA, but<br>to TBDmA. A simple<br>voltage droop due to<br>predict a voltage at the<br>3.0V, but since the curve<br>voltage at DAC0 woul                                                                                                                                                                                                                                                                                                                                                                                                                                     | hm resistor fr<br>dance of 50 c<br>lation would p<br>ut the output l<br>calculation ta<br>the internal s<br>ne DAC0 term<br>rrent is limite | rom D<br>ohms,<br>oredic<br>buffer<br>aking<br>50 oh<br>inal o<br>d to T | AC0 to GN<br>and DAC<br>at a current<br>will limit<br>into acco<br>m resista<br>f 4.5*100/(4<br>FBDmA th | ND, wi<br>to set<br>the cl<br>unt o<br>nce w<br>50+100 | th the<br>to<br>urrent<br>nly the<br>vould |  |  |

Τ7

 Table A4-2. T7 DAC Information. All specs at room temperature unless otherwise noted.

|                                                                                                                                                                                                                                                   | Conditions                                                                                                                                                               | Min                                                                                                  | Typical                                                                                                                              | Мах                                                                                                     | Units                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Naminal Outrout                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                      |                                                                                                                                      |                                                                                                         |                                                                         |
| Nominal Output<br>Range [5]                                                                                                                                                                                                                       | No Load                                                                                                                                                                  | 0.01                                                                                                 |                                                                                                                                      |                                                                                                         | Volts                                                                   |
|                                                                                                                                                                                                                                                   | @ ±2.5 mA                                                                                                                                                                | 0.25                                                                                                 |                                                                                                                                      | 4.75                                                                                                    | Volts                                                                   |
| Resolution                                                                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                      | 12                                                                                                                                   |                                                                                                         | Bits                                                                    |
| Absolute Accuracy                                                                                                                                                                                                                                 | 5% to 95%<br>FS                                                                                                                                                          |                                                                                                      | ±0.06                                                                                                                                |                                                                                                         | % FS                                                                    |
| Integral Linearity<br>Error                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                      | ±1.5                                                                                                                                 | ±2                                                                                                      | counts                                                                  |
| Differential<br>Linearity Error                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                      | ±0.25                                                                                                                                | ±0.5                                                                                                    | counts                                                                  |
| Noise [6]                                                                                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                      | ±100                                                                                                                                 |                                                                                                         | μV                                                                      |
| Source Impedance<br>[7]                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                      | 50                                                                                                                                   |                                                                                                         | Ω                                                                       |
| Current Limit [8]                                                                                                                                                                                                                                 | Max to<br>GND                                                                                                                                                            |                                                                                                      | 20                                                                                                                                   |                                                                                                         | mA                                                                      |
| Time Constant                                                                                                                                                                                                                                     |                                                                                                                                                                          |                                                                                                      | 4                                                                                                                                    |                                                                                                         | μs                                                                      |
|                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                      |                                                                                                                                      |                                                                                                         |                                                                         |
|                                                                                                                                                                                                                                                   |                                                                                                                                                                          | increa                                                                                               | ises notic                                                                                                                           | eably                                                                                                   |                                                                         |
| vs. With a 1000 ohm<br>4.4V and higher. With<br>noticeably at 3.7V and<br>increases noticeably<br>[7] For currents up to<br>dominates the error<br>DAC0 with a 1000 oh<br>DAC0 to 3.0V, the act<br>about 3.0*1000/(50+100<br>increasingly get add | th a 330 ohm<br>nd higher. Wi<br>o at 2.7V and<br>o about 8mA,<br>due to loadin<br>m resistor fro<br>tual voltage a<br>00) = 2.86V. Fo<br>ed droop due                   | Increation<br>Ioad,<br>th a 1<br>highe<br>this s<br>g. For<br>mDAC<br>the<br>the<br>to the<br>to the | ses notic<br>noise inc<br>00 ohm l<br>r.<br>cource im<br>r example<br>co to GND<br>DAC0 term<br>ents > 8r<br>e ability c             | eably<br>crease<br>oad, r<br>pedar<br>pedar<br>, and<br>, and<br>ninal v<br>nA, yo                      | v at<br>es<br>noise<br>nce<br>ou load<br>set<br>vill be<br>ou           |
| 4.4V and higher. With<br>noticeably at 3.7V at<br>increases noticeably<br>[7] For currents up to<br>dominates the error<br>DAC0 with a 1000 oh<br>DAC0 to 3.0V, the ac<br>about 3.0*1000/(50+100                                                  | th a 330 ohm<br>nd higher. Wi<br>v at 2.7V and<br>o about 8mA,<br>due to loadin<br>m resistor fro<br>tual voltage a<br>00) = 2.86V. Fo<br>ed droop due<br>antial current | Increation<br>Ioad,<br>th a 1<br>highe<br>this s<br>g. For<br>mDAC<br>to the<br>close<br>ent to      | ses notic<br>noise inc<br>00 ohm l<br>r.<br>ource im<br>r example<br>co to GND<br>DAC0 term<br>ents > 8r<br>e ability c<br>to the po | eably<br>crease<br>oad, r<br>pedal<br>pedal<br>e, if yc<br>, and<br>ninal v<br>nA, yc<br>of the<br>ower | v at<br>es<br>noise<br>nce<br>bu load<br>set<br>vill be<br>bu<br>output |

# A-5 General Specs [T-Series Datasheet]

Log in or register to post comments

All specs at room temperature unless otherwise noted.

## **Power Supply Input**

The following table shows the supply voltage that is required. The USB hub or 5V USB adapter in use should fall within the acceptable range.

Table A5-1.

| Parameter | Condition | Min | Typical | Max | Units |
|-----------|-----------|-----|---------|-----|-------|
|           |           |     |         |     |       |

| Supply<br>Voltage        |                                                                                                        | 4.75  |          | 5.25   | Volts |
|--------------------------|--------------------------------------------------------------------------------------------------------|-------|----------|--------|-------|
| Supply<br>Current        | T7, No connected<br>loads [1]                                                                          | 4     | 250      | 290    | mA    |
|                          | T4, No connected<br>loads [1]                                                                          |       | 210      |        | mA    |
|                          |                                                                                                        |       |          |        |       |
| and enabled below for mo | rrent will vary, depend<br>functionality. See Pow<br>re details. Total contir<br>ot to 500 mA or less. | er Co | nsumptio | on sec | ction |

### vs Outputs

The following table provides specifications for the VS outputs.

Table A5-2.

| Parameter                                               | Condition       | Min  | Typical | Max  | Units |  |  |
|---------------------------------------------------------|-----------------|------|---------|------|-------|--|--|
|                                                         |                 |      |         |      |       |  |  |
| Voltage [1]                                             |                 | 4.75 |         | 5.25 | Volts |  |  |
| Max                                                     | 500 mA - Supply |      | 200     |      | mA    |  |  |
| Current                                                 | Current         |      |         |      |       |  |  |
| [1] VS voltage is the same as the power supply voltage. |                 |      |         |      |       |  |  |

### System Clock

Table A5-3.

| Parameter   | Condition    | Min | Typical | Max  | Units |
|-------------|--------------|-----|---------|------|-------|
|             |              |     |         |      |       |
| Clock Error | ~ 25 °C      |     |         | ±20  | ppm   |
|             | -10 to 60 °C |     |         | ±50  | ppm   |
|             | -40 to 85 °C |     |         | ±100 | ppm   |

### Physical

Table A5-4.

| Parameter                    | Condition           | Min | Typical         | Max | Units   |
|------------------------------|---------------------|-----|-----------------|-----|---------|
|                              |                     |     |                 |     |         |
| USB Cable Length             |                     |     | 2               | 5   | meters  |
| Operating<br>Temperature     |                     | -40 |                 | 85  | °C      |
| Screw Terminal Wire<br>Gauge |                     |     | 26              | 14  | AWG     |
| Mounting Screws              | wood screw<br>sizes | #4  | #6              | #8  |         |
| Enclosure Screws<br>(x6)     | PH1 pan head        |     | #4-20 x<br>5/8" |     | Phil #1 |

### **Power Consumption**

At this time USB and Core speed are not intended for user level control, but have been included in the following table to show the capabilities of the device. The values shown are <u>typical</u>.

#### Table A5-5. T4 Power Consumption

| Core<br>Speed | Eth<br>[1] | Eth<br>Linked | LEDs      | USB<br>[1] | USB<br>Linked | Draw<br>(mA) | Typical Deviation (%) |
|---------------|------------|---------------|-----------|------------|---------------|--------------|-----------------------|
|               |            |               |           |            |               |              |                       |
| 80M           | ON         | Yes           | ON        | ON         | Yes           | 210          | ±4                    |
| 80M           | ON         | Yes           | ON        | ON         | No            | 195          | ±4                    |
| 80M           | ON         | No            | ON        | ON         | Yes           | 170          | ±4                    |
| 80M           | ON         | No            | OFF       | ON         | Yes           | TBD          | ±10                   |
| 80M           | ON         | No            | OFF       | OFF        | No            | TBD          | ±10                   |
| 20M           | ON         | No            | OFF       | OFF        | No            | TBD          | ±20                   |
| 2M            | OFF        | No            | OFF       | OFF        | No            | TBD          | ±20                   |
| 250k          | OFF        | No            | OFF       | OFF        | No            | TBD          | ±33                   |
|               |            |               |           |            |               |              |                       |
| [1] Ethern    | net and l  | JSB requir    | e that th | ne core    | be running    | at least 2   | 20MHz.                |

## Table A5-6. T7 Power Consumption

| Core<br>Speed | Eth<br>[1] | Eth<br>Linked | AINs     | WiFi   | WiFi<br>Linked | LEDs     | USB<br>[1] | Draw<br>(mA) | Typical Deviation (%) |
|---------------|------------|---------------|----------|--------|----------------|----------|------------|--------------|-----------------------|
|               |            |               |          |        |                |          |            |              |                       |
| 80M           | ON         | Yes           | ON       | ON     | Yes            | ON       | ON         | 280          | +/- 4                 |
| 80M           | ON         | Yes           | ON       | ON     | No             | ON       | ON         | 280          | +/- 3                 |
| 80M           | ON         | Yes           | ON       | OFF    | No             | ON       | ON         | 250          | +/- 4                 |
| 80M           | ON         | No            | ON       | OFF    | No             | ON       | ON         | 200          | +/- 5                 |
| 80M           | OFF        | No            | ON       | OFF    | No             | ON       | ON         | 170          | +/- 4                 |
| 80M           | OFF        | No            | OFF      | OFF    | No             | ON       | ON         | 140          | +/- 4                 |
| 80M           | OFF        | No            | OFF      | OFF    | No             | OFF      | ON         | 94           | +/- 11                |
| 80M           | OFF        | No            | OFF      | OFF    | No             | OFF      | OFF        | 86           | +/- 9                 |
| 20M           | OFF        | No            | OFF      | OFF    | No             | OFF      | OFF        | 28           | +/- 18                |
| 2M            | OFF        | No            | OFF      | OFF    | No             | OFF      | OFF        | 10           | +/- 20                |
| 250k          | OFF        | No            | OFF      | OFF    | No             | OFF      | OFF        | 6            | +/- 33                |
|               |            |               |          |        |                |          |            |              |                       |
| [1] Ethern    | et and U   | SB require    | that the | e core | be running     | at least | 20MHz      |              | •                     |

## $200 \mu A$ and $100 \mu A$ Current Sources - T7 Only

Table A5-7.

| Parameter                                                            | Condition     | Min | Typical           | Max             | Units  |
|----------------------------------------------------------------------|---------------|-----|-------------------|-----------------|--------|
|                                                                      |               |     |                   |                 |        |
| Accuracy vs. Cal<br>Value [1]                                        | ~ 25 °C       |     | ±0.1              | ±0.2            | %      |
| Accuracy vs. Nominal [1]                                             | ~ 25 °C       |     |                   | ±5              | %      |
| TempCo 200UA [2]                                                     | ~ 25 °C       |     |                   |                 | ppm/°C |
| TempCo 10UA [2]                                                      | ~ 25 °C       |     |                   |                 | ppm/°C |
| Maximum Voltage                                                      |               |     | 2.0V less than vs |                 | volts  |
| [1] First spec is the acc<br>calibration. The second                 | d spec is the | acc | uracy compared to |                 | 0      |
| value (e.g. 200.0 µA fo<br>[2] Tempco varies stro<br>200uA and 10uA. |               |     | /                 | rts in <u>1</u> | 12.0   |

VM+ and VM- (T7 Only)

# 19 May 2019

## Table A5-8.

| Parameter          | Condition | Min Typical |     | Max | Units |
|--------------------|-----------|-------------|-----|-----|-------|
|                    |           |             |     |     |       |
| Typical Voltage    | No-load   |             | ±13 |     | volts |
|                    | @ 2.5 mA  |             | ±12 |     | volts |
| Maximum<br>Current |           |             | 2.5 |     | mA    |